skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boatner, Lynn A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SnO2 is a prototypical transparent conducting oxide that finds widespread applications as transparent electrodes, gas sensors, and transparent thin-film devices. Hydrogen impurities in SnO2 give rise to unintentional n-type behavior and unexpected changes to conductivity. Interstitial H (Hi) and H at an oxygen vacancy (HO) are both shallow donors in SnO2. An O–H vibrational line at 3155 cm−1, that can be produced by a thermal anneal at 500 °C followed by a rapid quench, has been assigned to the Hi center and is unstable at room temperature on a timescale of weeks. An IR absorption study of the decay kinetics of the 3155 cm−1 O–H line has been performed. The disappearance of Hi upon annealing has been found to follow second-order kinetics. Measurements of the decay rate for a range of temperatures have determined an activation energy for the diffusion of interstitial H in SnO2. These results provide fundamental information about how unintentional hydrogen impurities and their reactions can change the conductivity of SnO2 device materials in processes as simple as thermal annealing in an inert ambient. 
    more » « less